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a b s t r a c t

Molecular communications is emerging as a promising paradigm for nanoscale communi-
cations in nanotechnology. Though still at an early stage, research efforts have been de-
voted and various molecular communication systems have been proposed. However, each
proposed system possesses a specific structure to achieve communications in its ownway.
To our best knowledge, no unified system description exists so far. In this paper, we pro-
pose an abstract system structure called an event-driven system; a significant group of
molecular communication systems can be classified into such an abstract form. We de-
fine event-driven systems and further show that, for these systems, there is a signaling
scheme called asynchronous information embedding which carries additional information
while at the same time keeping the original communicationmechanisms uninfluenced. In-
stead of investigating asynchronous information embedding in full generality, we consider
synchronous type-based systems as a demonstrative example which still captures most
of the features. For such type-based systems, we develop an approximation method for
obtaining the channel capacity as a general performance measure. Numerical results are
provided to show the capacity gain of asynchronous information embedding.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The term nanotechnology was first defined in 1974 [1]
as the following: ‘‘Nanotechnology mainly consists of the
processing of separation, consolidation, and deformation
of materials by one atom or by one molecule’’. Since then,
significant progress has been made and the concept of
the ‘‘nano-machines’’, which are devices of scale 1–100
nm, has been established. Such nano-machines can be
considered as themost basic functional unit, and therefore
they can only perform very simple tasks of computation,
sensing, etc. One of the core issues of nanotechnology is
how to communicate between two nano-machines. In the
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past decades, different communication paradigms have
been proposed, among them the most promising one
being molecular communications, which is defined as the
‘‘transmission and reception of information encoded in
molecules’’.

Though still at an early stage, some research efforts
have been made in molecular communications. For ex-
ample, [15] proposes a physical end-to-end model in
diffusion-based molecular systems. In [12], a time-slotted
system with diffusion-based channels is considered. The
work in [6] considers a time-slotted system with informa-
tion embedded in molecule levels, and [7] considers a sim-
ilar systemwith information embedded inmolecule types.
In [2–4], a series of information-theoretical studies is pro-
vided for systems with nano-machines operating on the
ligand–receptor binding mechanism. Besides these theo-
retical studies, laboratory experiments have also been con-
ducted [18,13].

http://dx.doi.org/10.1016/j.nancom.2012.11.001
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Although there are several kinds of molecular commu-
nication system that have been proposed, each systempos-
sesses a specific structure and achieves communications in
its own way. There is no systematic classification of these
molecular communication systems in the literature so far.
In this paper, we define an abstract system structure called
an event-driven system, and claim that many commonly
seen molecular communication systems fall into this cat-
egory. We also show that these event-driven systems have
a great property that one can embed additional informa-
tion upon the original signaling method without affecting
the original messages.We call such a process asynchronous
information embedding for event-driven systems, and the
details are discussed in later sections.

Among recent works, most of the molecular commu-
nication systems are assumed to be time-slotted so that
the inter-transmission durations are fixed. We call such
systems synchronous as a counterpart to the terminol-
ogy ‘‘asynchronous’’. The information of synchronous sys-
tems is carried on either the level [12,6] or the type [7] of
molecules. For example, in synchronous level-based sys-
tems, the logic ‘‘0’’ or ‘‘1’’ may be represented by trans-
mitting no molecule and one molecule, respectively, at
the starting of each time-slot (see Section 3 for rigor-
ous definition of synchronous type-based systems). These
synchronous systems are just important examples of
event-driven systems. We then study the asynchronous
information embedding process under these synchronous
systems. We show how to utilize the randomness of
inter-transmissions to embed additional information, thus
creating a new signaling scheme for molecular commu-
nications. Specifically, we develop a full system structure
for the Bernoulli inter-transmissions and extensively ana-
lyze the proposed systems. We will first derive fundamen-
tal performance measures, e.g. the error probability. After
that, in order to assess the total effect of injecting the ran-
dom inter-transmissions, we introduce an approximation
for the channel capacity and use it as an unified measure-
ment for performance comparison between synchronous
and asynchronous systems taking the same average time
per channel use.

The rest of this paper is organized as follows. In Sec-
tion 2,we first definewhatwemean by an event-driven sys-
tem, and discuss the information embeddingmethod called
asynchronous information embedding on these systems. In
Section 3,wepropose a simple systemmodel (synchronous
type-based system) that captures the main characteristics
of event-driven systems. In Section 4, we analyze the asyn-
chronous information embedding process on the systems
proposed in Section 3, and also derive the capacity ap-
proximation for these systems. In addition, a procedure for
system design is discussed at the end of this section. In
Section 5, numerical results are presented. Finally, conclu-
sions are made in Section 6.

2. Event-driven systems

Different from time synchronous designs, and inspired
by biological systems [11], the event-driven concept has
been used in computation and system design for a long
time [9]. Later, event-driven designs were introduced to
communication systems and networks such as sensor
networks [17].

2.1. Definition and examples of event-driven systems

Before formally defining an event-driven system, we
first introduce some new terminologies for a communica-
tion system. For a given communication system, we asso-
ciate two stochastic processes defined as follows.

Transmission process ({Ti}, {Xi}). The transmission pro-
cess consists of a pair of stochastic processes:
the transmission times {Ti} and the transmission
events {Xi}. More precisely, the transmission times
are the times when the transmitter releasesmes-
sages (or information), while the transmission
events represent the transmitted information at
the corresponding transmission times.

Decision process ({Ri}, {Di}). The decision process con-
sists of a pair of stochastic processes: the decision
times {Ri} and the decision events {Di}. More pre-
cisely, the decision times are the times when the
receiver makes decisions. The decision events are
random variables denoting the outcomes of each
decision.

For a communication system, the most general formu-
lation of observation is to model it as a continuous-time
stochastic process C(t), where the variable t represents the
time index. For instance, the notation C(t) may represent
the amplitude of an EMwave, or itmay represent the num-
ber of received particles. Note that C(t) depends only on
the transmission pattern (modulated signal) and the chan-
nel effect. The spirit of digital communication is then to
design a receiverwhich, at certain times, utilizes the cumu-
lated observation and prescribed knowledge to make good
decisions in relevant hypothesis testing problems.

For example, in classical EM-wave communications,
the receiver of a binary phase-shift keying (BPSK) system
makes a decision every fixed time duration T by passing
the observation results into two matched filters. Fig. 1
illustrates the transmission process and decision process
of a BPSK system. As another example, most of the existing
molecular communication systems are all supposed to
be synchronized. That is, the transmitter sends messages
periodically with a fixed time duration T , and the
receiver makes decisions according to the same period.
For synchronized systems, the transmission times {Ti}
and decision times {Ri} are all determined numbers
(say T , 2T , 3T , . . .), which can also be viewed as a
‘‘degenerated’’ stochastic process.

With the help of the above-defined terminologies, we
can now give a formal definition of what we call event-
driven systems.

Definition. A system is said to be event driven if, for
every positive integer i ∈ N, the ith decision event is
a deterministic function g of the observation at the ith
decision time. In symbols,

Di = g(C(Ri)), ∀i ∈ N. (1)

Intuitively speaking, event-driven systems refer to
those systemswhose decision rules are operating precisely
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Fig. 1. Receiver of a BPSK system (not event driven).

on the instants of decision times {Ri}, but do not depend
on the long-term behavior of observations. We give some
examples, as follows.

• The BPSK system is not event driven, since each
decision eventDi depends on the observationwithin the
corresponding time interval [Ti−1, Ti], but not only at Ti.

• The molecular system proposed in [2] serves as a
classical example of event-driven systems. In [2], the
transmitter emits a sequence of chemical substances,
and the information is carried on the concentration
levels. The receiver makes a decision whenever the
concentration of such substance reaches certain levels.
The event-driven nature of this system is that the
receiver only cares about what levels are reached, and
not the transient behaviors of chemical concentrations
over time.

• There is another large group of systems in molecu-
lar communications that can be classified into event-
driven systems. The so-called particle-based systems
refer to systems whose transmitter conveys informa-
tion by emitting a sequence of particles. The observa-
tion at receiver C(t) in this case is the received particle
numbers at time t . Since the particle number is ‘‘dis-
crete’’ in nature, we can model C(t) as a (compound)
counting process. In such systems, the receiver is often
designed to make decisions upon the instant when re-
ceiving a particle (or in the terminology of a count-
ing process, upon the arrival times). For these reasons,
many particle-based systems fall into the category of
event-driven systems. See Fig. 2 for an example.

2.2. Asynchronous information embedding for event-driven
systems

In this subsection,we formally discuss the asynchronous
information embedding process. For each i ∈ N, we set the
following hypothesis testing problem:
H0 : Ri − Ri−1 ∼ Y0,
H1 : Ri − Ri−1 ∼ Y1,

(2)

where Ri − Ri−1 is the decision time difference, and Y0
and Y1 are two known distributions.1 We coin the name

1 The tilde symbol (∼) in Eq. (2) stands for ‘‘having the same
distribution as’’.
‘‘asynchronous information embedding’’ for such process
since, as opposed to synchronous systems, the decision
times are random and not equally spaced.

We focus on the systems whose decision times are
influenced only by the transmission times, but not the
transmission events (which is intuitively most cases). We
discover that, for event-driven systems, there are condi-
tions guaranteeing that ‘‘additional information’’ is trans-
mitted through the asynchronous information embedding
process. That is, all the transmission and decision events
{Xi} and {Di} are kept unchanged, and so are all their de-
rived functionals, e.g. mutual information I , entropy rate
H , etc.

Now we give precise conditions for our purpose. Con-
sider a transmission process ({Ti}, {Xi}), its corresponding
observation C(t), and decision process ({Ri}, {Di}). Upon
modifying the distributions of transmission times from {Ti}
to {T ′

i }, we obtain a new observation C ′(t) and a new de-
cision process ({R′

i}, {D
′

i}). Suppose that the difference of
decision times takes on two known distributions:
H0 : R′

i − R′

i−1 ∼ Y0

H1 : R′

i − R′

i−1 ∼ Y1.
(3)

Under these hypotheses, we claim that such event-driven
system has the following two properties.

(P1) Given the observation value at some decision time,
the corresponding decision event is conditionally
independent of the decision time. In notation,2

Di⊥Ri | C(Ri) (4)

and

D′

i⊥R′

i | C ′(R′

i). (5)

(P2) Suppose further that C(Ri) = C ′(R′

i) for each i. That
is, the observation at each decision time remains
unchanged after we modify {Ti} into {T ′

i }. Then the
outcomes of decision events also remain the same. In
notation, C(Ri) = C ′(R′

i) implies that Di = D′

i .

Proof. The first property is a simple consequence of
the definition of event-driven systems, since, given C(Ri)
(or C ′(R′

i)), Di (or D′

i) is a deterministic value, and thus
independent of Ti (or T ′

i ). On the other hand, we have again
from the definition of event-driven systems that

Di = g(C(Ri)) = g(C ′(R′

i)) = D′

i, (6)

since the decision event is a deterministic function of C(Ri)
(or C ′(R′

i)) and thus verifies the second property. �

An important interpretation of P1 is that event-driven
systemsdonot utilize the timing information tomakedeci-
sions. In other words, the occurring times Ri do not matter,
but only the values of C(Ri). This implication hasmotivated
us to consider additional information embedding utilizing
the timing information, thus giving birth to the above asyn-
chronous information embedding process. However, such

2 We use the notation A⊥B | C to say that A and B are independent
conditioned on C.
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Fig. 2. A type-based molecular communication system (event driven), where the circle represents bit 0, and the diamond represents bit 1.
asynchronous information embedding might possibly in-
fluence the performance of the original system in some
manner. Nevertheless, P2 eliminates such suspicions by
telling us that, for event-driven systems, the decision re-
sults are kept unchanged provided that the observations
at new decision times remain equal.

Another implication from P2 is that, since Di = D′

i
for each i, the mutual information and entropy rate also
remain unchanged:

I(Xi;Di) = I(Xi;D′

i), (7)

H(Di) = H(D′

i). (8)

It is a classical result that the channel capacity can be
expressed in terms of the mutual information I , so Eqs. (7)
and (8) imply that the channel capacity is also preserved.
In other words, the amount of information transmitted
through transmission events {Xi} remains the same.

The key point to obtain all these good results is the
assumption that ‘‘C(Ri) = C ′(R′

i)’’ in P2. However, this
condition does not always hold, since C(t) might very well
be influenced by the modification of transmission times as
we embed additional information in time.

For practical applications, we might want to find some
weaker conditions which still have acceptable results. The
second best we hope is that the observation is ‘‘almost
unchanged’’, say C(Ri) ∼= C ′(R′

i) in some probabilistic
sense, which is usually the case in many molecular event-
driven systems (see the next subsection for reasons). We
now rigorously define what we mean by ‘‘C(Ri) ∼= C ′(R′

i)

in a probabilistic sense’’, and then use this condition to
prove the following important properties. For event-driven
systems, the following hold.

(P3) C(Ri) ∼= C ′(R′

i) implies that I(Xi;Di) ∼= I(Xi;D′

i).
(P4) C(Ri) ∼= C ′(R′

i) implies that H(Di) ∼= H(D′

i).
Inwords, the information amount transmitted through {Xi}

is ‘‘almost’’ kept provided that the observation at decision
times is ‘‘almost’’ the same.

In the following context, f (·) denotes the probabil-
ity distribution function (p.d.f.) of the corresponding sub-
scripted random variables, and all the integrations are
performed in the Lebesgue sense. Given a sequence of
transmission events {Xi}, we say that C(Ri) ∼= C ′(R′

i) in a
probabilistic sense if, for each i, there is a small positive
number ϵ such that

Z


X
|fXi,C(Ri)(x, z) − fXi,C ′(R′

i)
(x, z)| dx dz < ϵ, (9)

where Z andX are the domains ofC(Ri) andXi, respectively.
In event-driven systems, since every Di is a function of
C(Ri), we can change condition (9) into the following. For
each i, there is a small positive number ϵ such that

W


X
|fXi,Di(x, w) − fXi,D′

i
(x, w)| dx dw < ϵ, (10)

where W is the domain of both Di and D′

i . Notice that the
above formula is similar to the well-known total-variation
distance between random variables. In other words, we are
actually demanding that every pair of (Xi,Di) is close to
(Xi,D′

i) in the sense of total-variation distance.
Now, we can write P3 and P4 into a theorem.

Theorem. Let the Di be finitely supported. Suppose that
condition (10) holds for some ϵ > 0. Then

(a) |H(D) − H(D′)| → 0 as ϵ → 0,
(b) |I(Xi;Di) − I(Xi;D′

i)| → 0 as ϵ → 0.

Proof. (a) Suppose that (10) holds true:
W

fDi(d) − fD′
i
(d)

 dw

=


W


X
fXi,Di(x, d) − fXi,D′

i
(x, d) dx

 dw
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≤


W


X

fXi,Di(x, d) − fXi,D′
i
(x, d)

 dx dw

< ϵ. (11)

This shows that Di ∼= D′

i in the sense of total-variation
distance. Since the Di are finitely supported, for every
d ∈ D we have |fDi(d) − fD′

i
(d)| ≤ ϵ. Without loss of

generality, we can assume the Di to be binary-valued
random variables, so that H(Di) and H(Di) take the
form

H(Di) = −q log q − (1 − q) log(1 − q), (12)

and

H(D′

i) = −q′ log q′
− (1 − q′) log(1 − q′) (13)

for some fixed numbers q, q′
∈ [0, 1]with |q−q′

| ≤ ϵ.
The desired result now follows from the fact that all
the functions f1(q) = q, f2(q) = 1 − q, f3(q) =

log q, f4(q) = log(1 − q) are continuous, and so are
their multiplications and linear combinations.

(b) Using the relation I(X; Y ) = H(X) + H(Y ) − H(X, Y ),
we have

|I(Xi;Di) − I(Xi;D′

i)|

= |H(Di) − H(D′

i) + H(Xi,D′

i) − H(Xi,D′

i)|

≤ |H(Di) − H(D′

i)| + |H(Xi,D′

i) − H(Xi,D′

i)|. (14)

The first term in (14) tends to 0 by part (a); the second
term also tends to 0 by a similar argument as in (a).
Therefore, |I(Xi;Di)−I(Xi;D′

i)| tends to 0 as ϵ → 0. �

This motivates us to propose a communication scheme
that embeds information on the decision times for event-
driven systems. Consider the following scenario: the
transmission times are random variables. The decision
time difference Ti − Ti−1 follows
H0 : Ti − Ti−1 ∼ Y0,
H1 : Ti − Ti−1 ∼ Y1,

where Y0 and Y1 are two known distributions. Then we
can form the hypothesis testing problem and solve it
simply by computing the likelihood-ratio statistic

fY0 (y)
fY1 (y)

and comparing it to the decision threshold. Suppose
further that the observation under H0 or H1 is the same;
that is, C(Ti|H0) = C ′(Ti|H1) for all i. Then, by P2, the
outcomes of decision events are the same for H0 and
H1. The above discussion shows that we can transmit
information through the transmission times. This tells us
that, once the distribution of decision times is controllable,
we can embed ‘‘additional information’’ in the sense that,
on top of information from the decision events, there
are also decodable messages from (between) decision
times. Besides, P1 implies that the decision for observation
C(Ti) does not involve the decision times, while solving
the above hypothesis problems involves only the timing
information. Therefore, the decision devices for decoding
the above hypothesis problems and the observation C(t)
can be separated as independent components. In the
terminology of the well-studied classical communications,
we have utilized the timing information as an orthogonal
signaling scheme for event-driven systems.
2.3. System realization issues

In this subsection we examine existing molecular
systems. We begin by pointing out that most existing
molecular systems are synchronous, which we define in
Section 2.1 as being that the inter-transmission times Ti −
Ti−1 are fixed numbers. For example, the systems in [12,6,7,
2–4] are all synchronous. Another important observation is
that most molecular systems are operating on a diffusion
process. The diffusion process can be viewed as some
partial differential equations that, after the transmitter
releases all messages (or after a transmission process in
our terminology), govern the behavior of observations in
time. The solutions of these partial differential equations
exhibit exponentially decreasing tails, and therefore are
transient at the start and will reach a steady state after
some fixed time duration (see [8]). This property is
very useful when we require robustness against time
interferences caused by diffusion processes. For example,
the systems in [12] utilize the Neyman–Pearson lemma
to derive the inter-transmission times that ensure very
small error probability. The same procedure also applies to
systems in [6,7,2–4], which are all operating on diffusion
processes.

Recall that the results in Section 2.2 require C(Ri) ∼=

C ′(R′

i) in a probabilistic sense. This requirement is easily
achieved if we make use of the observations illustrated in
the last paragraph. Consider any synchronous molecular
system. By properly choosing the inter-transmission times
through the Neyman–Pearson lemma as explained above
and in [12], we can ensure that

Di ∼= D′

i
∼= Xi. (15)

As a result, all the derivations and results in Section 2.2 ap-
ply, so that additional information is guaranteed through
asynchronous information embedding.

The above discussions are all based on the ideal
assumption that ‘‘the distributions of the decision times
can be controlled and the decision events do not alter
thereafter’’. The practical situations, however, is not always
perfect.

Given an event-driven system, consider its transmis-
sion process (Si, Xi) and decision process (Ti,Di), where Si
denotes the transmission times,Xi the transmission events,
Ti the decision times, and Di the decision events.

We point out a very important fact about the above
mechanism. Although we have proved that the decision
rule is invariant when we impose timing information, in
the information-theoretic point of view the original system
may very well be changed.

In the rest of this paper, we will demonstrate the con-
cept of asynchronous information embedding by using a
synchronous type-based molecular communication sys-
tem as an example of an event-driven system. Additional
information is embedded by letting the inter-transmission
times between two consecutive transmissions be random.
Without loss of generality, we choose the simple Bernoulli
random variable to demonstrate the whole process. The
capacity gain of such a process will also be discussed in the
following sections.
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3. Systemmodel of type-based synchronous systems

We consider a one-dimensional type-based molecular
communication system located in a fluidmedium.Without
loss of generality, suppose that a transmitter is located
at the origin and a receiver is at distance x on the
positive axis. The transmitter has M types of molecule.
Denote the type candidate set by Q. For example, if Q =

{A, B}, then there are two types of molecule, A and B.
After a molecule is released by the transmitter, it diffuses
freely in the medium and is assumed to follow Brownian
motion. We also assume that there are no interactions
between transmitted molecules, so each molecule diffuses
independently. Once a molecule reaches the receiver, it
is captured and discarded. The receiver is assumed to be
capable of recognizing the type and computing the time
difference between two consecutively received molecules.
Under these assumptions, each molecule experiences a
delay which is independent and identical for all molecules.
The distribution of the delay d is given by the first hitting
time of Brownian motion [10]:

fd(t) =
x

√
4πD

1

t
3
2
exp


−

(vt − x)2

4Dt


, (16)

where D is the diffusion coefficient, x is the distance
from the transmitter to the receiver, and v is the drifting
velocity. The diffusion coefficient D is given by

D =
kBT
6πnr

, (17)

where kB is the Boltzmann constant, T is the temperature,
n is the viscosity of the fluid medium, and r is the radius
of the molecule. For simplicity, we assume that the radii
for all molecules are the same, so that they have the
same diffusion coefficient. These assumptions are usual in
molecular communication systems. In themeantime,most
existing research also assumes that the inter-transmission
durations are fixed, which is a familiar concept rooted in
classical synchronous communications. We formally define
synchronous type-based systems [7] as follows.
• The transmitter conveys messages by releasing a

sequence of molecules in the type candidate set Q.
• Each molecule in Q represents a distinct message.
• The inter-transmission duration is a fixed real num-

ber T .
• Once the receiver receives a molecule, it recognizes the

molecule type and discards the molecule.

The information of systems with above settings is
carried on the molecule type. In this paper, we loosen
the third restriction to let the inter-transmission times
be random and call such systems asynchronous. We
impose an artificial distribution on the inter-transmission
times so that, under suitable decision rules, different
realizations of inter-transmission times can be recognized,
and therefore information can be transmitted. We coin
the term ‘‘mixed type–time’’ for such systems since the
information is carried on both the type and time. Formally,
we have the following definition of a mixed type–time
system.
• The transmitter conveys messages by releasing a

sequence of molecules in Q.
• Each molecule in Q represents a distinct message.
• All inter-transmission times follow a prescribed distri-

bution S. That is, let b1 and b2 be the transmission times
of any two consecutively transmitted molecules. Then
b2 − b1 ∼ S.

For mixed type–time systems, the decision rules at
the receiver side are yet to be designed. Although the
derivations of decision rules for general S are possible,
in this paper we will focus only on the special case of
Bernoulli inter-transmissions, that is, the case where S is
a Bernoulli random variable. This is the simplest version
of our asynchronous communication scheme. Despite its
simplification, it helps us gain insights into asynchronous
systems, and the principles of analysis apply to all finitely
supported distributions.

Though from a synchronous type-based system to a
mixed type–time system we have only modified one con-
dition, the receiver becomes quite complicated, and we
choose to focus on one factor at a time. Instead of directly
dealing with a mixed type–time system, we first observe
how the random inter-transmissions influence type-based
systems. After that, we ignore the information on the
molecule type and focus on the timing information. Finally,
we combine the above two systems. These steps are for-
mally recorded as studies of following three asynchronous
systems.

(i) Type-based system with i.i.d. random inter-trans-
missions

Assume that the inter-transmission times are i.i.d.
random variables. We further assume that the infor-
mation is carried only on the type of molecules.

(ii) Time-based system
In this system, the transmitted molecules are only

for timing purposes and are assumed to carry no in-
formation on the type (i.e., the receiver uses only the
arrival times for decision). The information is embed-
ded in the inter-transmission times of pairs of consec-
utively transmitted molecules.

(iii) Mixed type–time system
We can embed information in both molecule types

and inter-transmission times. The resulting system is
a combination of the above two and is just what we
have defined as the ‘‘mixed type–time system’’.

Although we do not mention synchronous systems explic-
itly, we will show in Section 4.1 that synchronous systems
are special cases of (i). Therefore, all the results for (i) apply
to synchronous systems. Analyses of (i) and (ii) will serve
as auxiliaries when we treat (iii).

4. Asynchronous information embedding for type-
based synchronous systems

In this section, we discuss in detail the asynchronous
information embedding process for the type-based system
described in the last section. We will treat all three
systems mentioned in Section 3 in the corresponding
subsections. In the following, f (·)will denote the p.d.f. and
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Fig. 3. Asynchronous system.

F(·) the cumulative distribution function (c.d.f.) of relevant
distributions.

4.1. Type-based systems with i.i.d. random inter-trans-
missions

We first derive the crossover error probability that is
greatly harmful to system performance in Section 4.1.1,
and then use it to compute the capacity approximation in
Section 4.1.2.

4.1.1. Crossover error probability
Consider a transmission pair in Fig. 3. Let b1, b2 be the

transmission times and d1, d2 the diffusion times of two
molecules, respectively. If the two transmitted molecules
are of the same type, then there is no error even if a
crossover occurs. However, if they are of different types
and if b1 + d1 > b2 + d2, a crossover error occurs. The
error probability is given by

Pe = P(b1 + d1 > b2 + d2)

=


P(b2 − b1 + d2 < t)fd(t)dt. (18)

Assume that the inter-transmission times are i.i.d. random
variables, say b2 − b1 ∼ S. Let Z , S + d. Then

Pe =


P(b2 − b1 + d2 < t)fd(t)dt

=


P(S + d2 < t)fd(t)dt

=


FZ (t)fd(t)dt. (19)

Note that, for a fixed number T > 0, if S = T a.s., then the
system reduces to the synchronous case. This suggests that
asynchronous systems aremore general than synchronous
ones.

4.1.2. Capacity approximation
We have derived the crossover probability in Sec-

tion 4.1.1. In general, to compute the channel capacity we
have to consider all levels of crossover. However, in the fol-
lowing we focus on the one-level crossover errors instead
of pursuing the general form of all crossovers for the fol-
lowing two reasons.
(i) The general form involves combinatorial terms and is

intractable in both computation and analytical form.
Fig. 4. Channel C.

(ii) Wewill give a procedure in Section 4.4 to design a sys-
tem with very small one-level crossover probability.
Under such settings, the crossovers of more than two
levels can be ignored.

Assume a set of M types of molecule. Suppose that the
probability of more than two-level crossover is negligible.
We now derive an approximation for the channel capacity
by viewing thewhole transmission process as independent
consecutive transmissions of pairs ofmolecules. Under this
assumption, we can construct an error transition matrix
PM2×M2 for each pair of molecules. By our analysis above,
PM2×M2 has the form

P =



1 0 · · · · · · 0
0 1 − Pe · · · Pe · · · 0
...

...
...

...
...

0 Pe · · · 1 − Pe · · · 0
...

...
. . .

...
...

0 · · · · · · · · · 1


,

wherethe rows consisting of a single ‘‘1’’ represent
transmission pairs of the same type of molecule and the
remaining rows those of different types. This form of
matrix has an interpretation in information theory (see
Fig. 4).

We can easily see thatNr = M andNb =
M2

−M
2 . It iswell

known that the channel capacity of a binary symmetric
channel (BSC) is given by 1 − H(Pe) [5]. From Fig. 4, we
can compute the channel capacity by [5] as

2C
= 2Cr + 2Cb , (20)

where Cr = logNr = logM and

Cb = logNb + 1 − H(Pe)

= log

M2

− M
2


+ 1 − H(Pe).
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So

C = log(2Cr + 2Cb)

= log

M +

M2
− M
2

21−H(Pe)


. (21)

This derivation shows that the channel capacity C depends
only on Pe and the type-numberM .

Wemake some remarks on (21). When considering any
transmission pair, all the previously transmittedmolecules
have impacts on the present transmission pair, so for every
transmission pair Pe should be different. However, (21)
shows that CM is a continuous function of Pe; thus a small
perturbation of Pe causes negligible effect on CM . Therefore,
if we carefully choose the inter-transmission distribution
(in Section 4.4), our approximation for channel capacity
consequently makes sense.

4.2. Time-based systems

In this section, we analyze systems with information
carried only in the inter-transmission times. We derive
relevant distributions in Section 4.2.1 anddecision rules for
various criteria in Section 4.2.2. The results in Section 4.2.2
are the foundations for discussions of system design in
Section 4.4.

Consider a consecutive two-molecule transmission
with information embedded in the time difference S. The
simplest case is that the time difference follows a Bernoulli
distribution with parameter π0. Explicitly, for two fixed
numbers t0, t1, t0 < t1,

P(S = s) =


π0 for s = t0
1 − π0 for s = t1.

We refer to Fig. 3 again and let b1, b2 be the transmission
times and d1, d2 the diffusion times of two molecules,
respectively. We can form the hypothesis testing problem:
H0 : b2 − b1 = t0,
H1 : b2 − b1 = t1.

The prior distribution for this system is just {π0, 1 − π0}

for H0,H1, respectively.

4.2.1. Derivations for related distributions
For a fixed hypothesis Hi, put U = d1 and V = d2 + ti.

Then U, V are independent since d1, d2 are. Define

M = max{U, V } = max{d1, d2 + ti},
N = min{U, V } = min{d1, d2 + ti}.

It is well known from order statistic theory [14] that

fN,M(n,m) = fU(m)fV (n) + fU(n)fV (m)

= fd(n)fd(m − ti) + fd(m)fd(n − ti) for m ≥ n. (22)

Note that in Section 3 we have only assumed the receiver
to be capable of computing the time differences, and not the
absolute times. Therefore, we cannot observe N directly.
Instead, our observation is Q , M − N = |U − V |.
Denote the realization of Q by q. The distribution of Q can
be calculated as follows:

FM−N(q|Hi) = P(M − N ≤ q|Hi)

=


∞

0


∞

0
P(m − n ≤ q|Hi)fM,N(m, n|Hi) dm dn

=


∞

0


∞

0
I{m−n≤q}fM,N(m, n|Hi) dm dn

=


∞

0

 n+q

0
fM,N(m, n|Hi) dm dn, (23)

where I{·} is the indicator function. We then differentiate
the c.d.f. with respect to q to obtain the p.d.f.:

fM−N(q|Hi) =
d
dq

FM−N(q|Hi)

=
d
dq


∞

0

 n+q

0
fM,N(m, n|Hi) dm dn. (24)

Since the integrand of the outer integral is bounded by
an integrable function


∞

0 fM,N(m, n)dm, by Lebesgue’s
dominated convergence theorem (DCT), we can exchange
the order of integration and differentiation:

fM−N(q|Hi) =


∞

0

d
dq

 n+q

0
fM,N(m, n|Hi) dm


dn

=


∞

0
fM,N(n + q, n|Hi) dn. (25)

4.2.2. Decision rules
Assume first that the prior distribution is knownand the

cost functions are the binary symmetric loss (i.e., we focus
on error probability minimization). Consider themaximum
a posteriori probability (MAP) criterion:

argmax
i∈{0,1}

P(Hi|q) = argmax
i∈{0,1}

P(Hi, q)
P(q)

= argmax
i∈{0,1}

P(Hi)P(q|Hi)

= argmax
i∈{0,1}

πifM−N(q|Hi).

It is well known that the MAP criterion leads to the
likelihood-ratio test [16]:

Decide:


H0 if Λ(q) >

π1

π0

randomized if Λ(q) =
π1

π0
,

H1 if Λ(q) <
π1

π0
,

where Λ(q) is the likelihood-ratio statistic

Λ(q) ,
fM−N(q|H0)

fM−N(q|H1)

=


∞

0 fM,N(n + q, n|H0)dn
∞

0 fM,N(n + q, n|H1)dn
. (26)

Without knowing the prior distribution, we consider
the minimax criterion. For a fixed decision rule δ, let PF (δ)
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and PM(δ) denote the false alarm and missing probability,
respectively. The minimax criterion is to consider the
following optimization problem:

min
δ

{max{PF (δ), PM(δ)}},

where the minimization is taken over all decision rules.
For the minimax criterion, the resulting decision rule
corresponds to the likelihood-ratio test of the least
favorable prior, which is given by the function

V (π0) = the minimum possible
Bayes risk for the prior π0.

Besides Bayes and minimax, we also consider the
Neyman–Pearson criterion, which corresponds to the
optimization problem

max
δ

PD(δ) subject to PF (δ) ≤ α,

where α < 1 is a specified level and PD(δ) , 1 − PM(δ)

is the detection probability. The best way to observe the
results of Neyman–Pearson tests is to draw the receiver
operating curves (ROCs).

Numerical results of both V (·) and ROCs are given in
Section 4.

4.3. Mixed type–time systems

Suppose now that the transmitter embeds information
in both the molecule types and inter-transmission times.
To assess the performance of the mixed type–time system,
we use the capacity approximation derived in previous
sections. For ease of illustration, we assume that there are
only two types of molecule, say Q = {A, B}. The general
case forM-type systems can be calculated similarly.

Denote the type-based information bit by A, B and the
time-based information bit by H0,H1. As in Section 4.1.2,
we view the whole transmission process as independent
consecutive transmissions of pairs of molecules and
separate the two cases.

4.3.1. Same type of molecule
For the decision rule we just derived on time-

based systems, let PF and PM denote the false alarm
probability andmissing probability, respectively. If the two
transmitted molecules are of the same type, then we have
the channel form:

For this channel (see Fig. 5), we have the probability
transition matrix

P =

1 − PF PF 0 0
PM 1 − PM 0 0
0 0 1 − PF PF
0 0 PM 1 − PM

 .

4.3.2. Different types of molecule
Similarly, we have the channel form in Fig. 6.
Fig. 5. Channel C1 .

Fig. 6. Channel C2 .

To derive the transition probabilities of this channel, we
use the notation in Section 4.2.1, and notice that

fQ (q|Hi,U < V ) =


∞

0
f (n + q − ti)f (n)dn, (27)

fQ (q|Hi,U ≥ V ) =


∞

0
f (n − ti)f (n + q)dn. (28)

The transition probability of the top link in Fig. 6 can be
calculated as

P(AB,H0|AB,H0) = (1 − Pe0)PQ (q ∈ Γ0|H0,U < V ), (29)

where Γ0 is the decision region of H0 and Pe0 = P(U ≥

V |AB,H0) is the one-level crossover probability when the
transmitting time difference is given by H0 (see Eq. (19)).
Other transition probabilities can be calculated similarly.

The channel capacity for both C1 and C2 can be
computed by the Blahut–Arimoto algorithm [19], and the
total channel capacity is given by

C = log(2C1 + 2C2). (30)

4.4. System design for mixed type–time systems

By system design we mean the assignments of relevant
system parameters, namely, t0, t1 and the corresponding
prior distributionπ0. Fromprevious derivationswe can see
that the performances of both type-based (Section 4.1.2)
and time-based (Section 4.2.2) systems are related to the
prior distribution π0, so π0 plays an important role when
we incorporate the two systems. The total effect, however,
of this prior is complicated and intractable in analytical
form. In such a situation, the idea is to design t0 and
t1 so that the controllable performance requirements are
satisfied. We therefore propose the following simple and
intuitive procedure.
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Fig. 7. V (π0) for drift velocity v = 1 µm/s, 300 K water.
Fig. 8. Receiver operating curves for drift velocity v = 1 µm/s, 300 K water.
(1) Specify two levels, α1 and α2, on type-based and time-
based systems, respectively.

(2) Choose t0 so that the level α1 is satisfied in the
type-based system. This can be done by the Ney-
man–Pearson procedure.

(3) Choose t1 so that the level α2 is satisfied in the
time-based system. This can be done, again, by the
Neyman–Pearson procedure.

Note that when considering time-based systems we
adopt the Neyman–Pearson procedure, since the minimax
procedure itself does not give the resulting performance,
the bit error rate (BER). Therefore, if we were to specify
a level beforehand and ask if the minimax procedure
meets our requirement, we have to compute for sets of
parameters the resulting BERs and see if any of them is
valid. In contrast, the procedure above automaticallymeets
our requirements and provides robustness that is valid for
all prior distributions and for both type-based and time-
based systems, thus guaranteeing a certain level of quality
of the overall mixed type–time systems.

5. Numerical results

We present numerical results in this section. In the
following, we assume that the fluidmedium is 300 Kwater
(so the viscosity is fixed) and the drift velocity v = 1µm/s.
t0 is set to 100 s and t1 to 300 s.
Although we do not adopt the minimax procedure, for
the sake of completeness we still present the V (·) in Fig. 7.
In Fig. 7, all curves are concave, which is in accordance to
the theory [16].Wemention that, although the figure looks
symmetric, the precise values are not, sowe cannot naively
set the least favorable prior to 0.5. This is just a coincidence
for our choices of parameters.

Fig. 8 presents the ROCs. We observe two situations in
this figure.

1. For fixed radius (diffusion coefficient), increasing the
distance worsens the performance.

2. For fixed distance, increasing the radius (or decreasing
the diffusion coefficient) improves the performance.

These facts conform to our intuitions. Informally speaking,
the diffusion coefficient represents the ‘‘stability’’ of the
molecules. Molecules with large radius tend to be stable
in space because of lighter random displacements, and
therefore systems with large molecule radii outperform
systemswith small ones. On the other hand, as the distance
increases, the uncertainty of the overall system increases,
and thereby the performance degrades.

It is well known that channel capacity is one of themost
fundamental performance measures for communication
systems. We therefore adopt the channel capacity as the
performance measure between synchronous type-based
(STB) systems [7] and mixed type–time (MTT) systems.
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Table 1
Capacity comparison.

Parameters STB (100 s) STB (200 s) STB (300 s) MTT

r = 10nm, x = 100µm 1.7620 1.9088 1.9678 2.3479
r = 10nm, x = 200µm 1.6801 1.8290 1.9240 2.0968
r = 20nm, x = 100µm 1.8290 1.9691 1.9955 2.5516
r = 20nm, x = 200µm 1.7336 1.9156 1.9818 2.2826

Table 1 contains the results of capacity approximation
derived in Sections 4.1 and 4.3. The inter-transmission
durations of synchronous systems are set to be 100 s,
200 s, and 300 s, respectively. As we see in Table 1, the
performance of the mixed type–time systems is much
better than that of the synchronous counterparts. This
fact suggests that carrying additional information in inter-
transmission times significantly improves the systems.

6. Conclusions

In this paper, we have defined an abstract system
structure called an event-driven system, and have shown
that, under such a system, we can carry additional
information without affecting the original signaling by
using a process called asynchronous information embedding.
We also showed that a great number of commonly seen
molecular communication systems fall into this category,
including all synchronous systems.

By using a synchronous type-based system as an ex-
ample, we examined in detail the process of asynchronous
information embedding. We saw that the channel capacity
had been increased after this embedding process. We have
also proposed a procedure for designing the systemparam-
eters to guarantee a good performance. Numerical results
confirmed the feasibility.

The effort in this paper serves as an initial study
of a brand new scheme of asynchronous information
embedding for molecular communications. Although we
focus on Brownian motion channels, the analyses in this
paper apply to any diffusion channels as long as the
delay distribution is known. Furthermore, we have only
analyzed synchronous type-based systems, whereas all
procedures in this paper apply to any event-driven system.
These problems remain open, and further investigations
are needed in the future.
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